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Summary

I A Transferable Calibration (TransCal) method, achieving
more accurate calibration with lower bias and variance in a
unified hyperparameter-free optimization framework.

I A dilemma in the open problem of Calibration in DA:
existing domain adaptation models learn higher classification
accuracy at the expense of well-calibrated probabilities.

I Extensive experiments on various DA methods, datasets,
and calibration metrics, while the effectiveness of our
method has been justified both theoretically and empirically.

I Code available @ github.com/thuml/TransCal

Domain Adaptation (DA)

I Deep learning across domains: (P 6= Q)
I Non independent and identically distributed distributions (Non-IID)

Transfer Learning

Transfer Learning

Machine learning across domains of di↵erent distributions P 6= Q
Independent and Di↵erently Distributed (IDD)

How to e↵ectively bound the generalization error on target domain?

Model ModelRepresentation

P(x,y)≠Q(x,y)

Simulation Real

Source Domain Target Domain
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Image Annotation

static fine (SF) static coarse (SC)

GT segmentation w/ SF GT segmentation w/ SC

GT segmentation w/ [41] GT subsampled by 2

GT subsampled by 8 GT subsampled by 32

GT subsampled by 128 nearest training neighbor

Figure 8. Exemplary output of our control experiments for the pixel-level semantic labeling task, see the main paper for details. The image
is part of our test set and has both, the largest number of instances and persons.
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Mainstream Approaches to DA

I Numerous deep DA methods can be mainly grouped into
two categories: moment matching and adversarial training.

I Most of DA methods focus on improving the accuracy in
the target domain but fail to estimate the predictive
uncertainty, falling short of a miscalibration problem.

Learning Transferable Features with Deep Adaptation Networks

3. Deep Adaptation Networks
In unsupervised domain adaptation, we are given a source
domainDs = {(xs

i , y
s
i )}ns

i=1 with ns labeled examples, and
a target domain Dt = {xt

j}nt

j=1 with nt unlabeled exam-
ples. The source domain and target domain are charac-
terized by probability distributions p and q, respectively.
We aim to construct a deep neural network which is able
to learn transferable features that bridge the cross-domain
discrepancy, and build a classifier y = θ(x) which can
minimize target risk ϵt (θ) = Pr(x,y)∼q [θ (x) ̸= y] using
source supervision. In semi-supervised adaptation where
the target has a small number of labeled examples, we de-
note by Da = {(xa

i , ya
i )} the na annotated examples of

source and target domains.

3.1. Model

MK-MMD Domain adaptation is challenging in that the
target domain has no (or only limited) labeled information.
To approach this problem, many existing methods aim to
bound the target error by the source error plus a discrepancy
metric between the source and the target (Ben-David et al.,
2010). Two classes of statistics have been explored for
the two-sample testing, where acceptance or rejection deci-
sions are made for a null hypothesis p = q, given samples
generated respectively from p and q: energy distances and
maximum mean discrepancies (MMD) (Sejdinovic et al.,
2013). In this paper, we focus on the multiple kernel variant
of MMD (MK-MMD) proposed by Gretton et al. (2012b),
which is formalized to jointly maximize the two-sample
test power and minimize the Type II error, i.e., the failure
of rejecting a false null hypothesis.

Denote by Hk be the reproducing kernel Hilbert space
(RKHS) endowed with a characteristic kernel k. The mean
embedding of distribution p in Hk is a unique element
µk(p) such that Ex∼pf (x) = ⟨f (x) , µk (p)⟩Hk

for all
f ∈ Hk. The MK-MMD dk (p, q) between probability dis-
tributions p and q is defined as the RKHS distance between
the mean embeddings of p and q. The squared formulation
of MK-MMD is defined as

d2
k (p, q) !

∥∥Ep [φ (xs)] − Eq

[
φ

(
xt

)]∥∥2

Hk
. (1)

The most important property is that p = q iff d2
k (p, q) = 0

(Gretton et al., 2012a). The characteristic kernel associated
with the feature map φ, k (xs,xt) = ⟨φ (xs) , φ (xt)⟩, is
defined as the convex combination ofm PSD kernels {ku},

K !
{

k =

m∑

u=1

βuku :

m∑

u=1

βu = 1, βu " 0, ∀u

}
, (2)

where the constraints on coefficients {βu} are imposed to
guarantee that the derived multi-kernel k is characteristic.
As studied theoretically in Gretton et al. (2012b), the kernel
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Figure 1. The DAN architecture for learning transferable features.
Since deep features eventually transition from general to specific
along the network, (1) the features extracted by convolutional lay-
ers conv1–conv3 are general, hence these layers are frozen, (2)
the features extracted by layers conv4–conv5 are slightly less
transferable, hence these layers are learned via fine-tuning, and
(3) fully connected layers fc6–fc8 are tailored to fit specific
tasks, hence they are not transferable and should be adapted with
MK-MMD.

adopted for the mean embeddings of p and q is critical to
ensure the test power and low test error. The multi-kernel
k can leverage different kernels to enhance MK-MMD test,
leading to a principled method for optimal kernel selection.

One of the feasible strategies for controlling the domain
discrepancy is to find an abstract feature representation
through which the source and target domains are simi-
lar (Ben-David et al., 2010). Although this idea has been
explored in several papers (Pan et al., 2011; Zhang et al.,
2013; Wang & Schneider, 2014), to date there has been no
attempt to enhance the transferability of feature representa-
tion via MK-MMD in deep neural networks.

Deep Adaptation Networks (DAN) In this paper, we ex-
plore the idea of MK-MMD-based adaptation for learning
transferable features in deep networks. We start with deep
convolutional neural networks (CNN) (Krizhevsky et al.,
2012), a strong model when it is adapted to novel tasks
(Donahue et al., 2014; Hoffman et al., 2014). The main
challenge is that the target domain has no or just limited
labeled information, hence directly adapting CNN to the
target domain via fine-tuning is impossible or is prone to
over-fitting. With the idea of domain adaptation, we are
targeting a deep adaptation network (DAN) that can exploit
both source-labeled data and target-unlabeled data. Fig-
ure 1 gives an illustration of the proposed DAN model.

We extend the AlexNet architecture (Krizhevsky et al.,
2012), which is comprised of five convolutional layers
(conv1–conv5) and three fully connected layers (fc6–
fc8). Each fc layer ℓ learns a nonlinear mapping hℓ

i =
f ℓ

(
Wℓhℓ−1

i + bℓ
)
, where hℓ

i is the ℓth layer hidden rep-
resentation of point xi,Wℓ and bℓ are the weights and bias
of the ℓth layer, and f ℓ is the activation, taking as recti-
fier units f ℓ(x) = max(0,x) for hidden layers or softmax
units f ℓ (x) = ex/

∑|x|
j=1 exj for the output layer. Letting

(a) Moment Matching: DAN (b) Adversarial Training: DANN

Confidence Calibration in Deep Learning

I A model should output a prediction probability reflecting
the true frequency of an event:

P(Ŷ = Y |P̂ = c) = c, ∀ c ∈ [0, 1] (1)

where Ŷ is the class prediction and P̂ is its confidence.
I DNNs learn high accuracy at the cost of over-confidence.
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Calibration Metric

I Expected Calibration Error (ECE)

LECE =
B∑

m=1

|Bm|
n
|A(Bm)− C(Bm)|

A(Bm) = |Bm|−1
∑

i∈Bm

1(̂yi = yi) (Accuracy)

C(Bm) = |Bm|−1
∑

i∈Bm

max
k

p(̂yk
i |xi,θ) (Confidence)

(2)

Temperature Scaling for IID Calibration

I Fix the neural model trained on the training set Dtr

I Attain the optimal temperature T ∗ by minimizing

T ∗ = arg min
T

E(xv ,yv)∈Dv
LNLL (σ(zv/T ), yv) (3)

σ is the softmax function, LNLL is Negative Log-Likelihood.
I Transform zte into calibrated probabilities pte = σ(zte/T ∗).

Dilemma of Accuracy vs Confidence in DA

I DA models yield high acc at the cost of poorly-calibration.
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Figure 1: Left: A comparison between IID Calibration with TransCal, where � denotes the deep
model; Right: an observation on the accuracy and ECE of various DA methods (12 transfer tasks of
Office-Home [47] with ResNet-50 [18]), indicating that DA models learn higher accuracy than the
SourceOnly ones at the expense of well-calibrated probabilities. See more results in D.1 of Appendix.

models and of great significance for decision-making in safety-critical scenarios. With built-in [9, 21]37

or post-hoc [37, 16] recalibration methods, the confidence and accuracy of deep models can be38

well-calibrated in the independent and identically distributed (IID) scenarios. However, it remains39

unclear how to maintain calibration under dataset shifts, especially when we do not have labels from40

the target dataset, as in the general setting of Unsupervised Domain Adaptation (UDA). We identify41

two obstacles in the way of applying calibration to UDA:42

• The lack of labeled examples in the target domain. We know that the existing successful43

post-hoc IID recalibration methods mostly rely on ground-truth labels in the validation set to44

select the optimal temperature [37, 16]. However, since ground-truth labels are not available45

in the target domain, it is not feasible to directly apply IID calibration methods to UDA.46

• Dataset shift entangled with the miscalibration of DNNs. Since DNNs are believed to learn47

more transferable features [30, 50], many domain adaptation methods embed DNNs to48

implicitly close the domain shift and rely on DNNs to achieve higher classification accuracy.49

However, DNNs are prone to over-confidence [16], falling short of a miscalibration problem.50

To this end, we study the open problem of Calibration in DA, which is extremely challenging due to51

the coexistence of domain gap and the lack of target labels. To figure out the calibration error on the52

target domain of domain adaptation models, we first delve into the predictions and confidences of the53

target dataset. By calculating the target accuracy and ECE [16] (a calibration error measure defined54

in 3.1) with various domain adaptation models before calibration, we found something interesting.55

As shown in the right panel of Figure 1, the accuracy increases from the weakest SourceOnly [18]56

model to the latest state-of-the-art MDD [53] model, while the ECE becomes larger as well. That is,57

after applying domain adaptation methods, miscalibration phenomena become severer compared with58

SourceOnly model, indicating that the domain adaptation models learn higher classification accuracy59

at the expense of well-calibrated probabilities. This dilemma is unacceptable in safety-critical60

scenarios, as we need higher accuracy while maintaining calibration. Worse still, the well-performed61

calibration methods in the IID setting cannot be directly applied to DA due to the domain shift.62

To tackle the dilemma between accuracy and calibration, we propose a new Transferable Calibration63

(TransCal) method in DA, achieving accurate calibration with lower bias and variance in a unified64

hyperparameter-free optimization framework, while a comparison with IID calibration is shown65

in the left panel of Figure 1. Specifically, we first define a new calibration measure, Importance66

Weighted Expected Calibration Error (IWECE) to estimate the calibration error in the target domain67

in a transferable calibration framework. Next, we propose a learnable meta parameter to further68

reduce the estimation bias from the perspective of theoretical analysis. Meanwhile, we develop a69

serial control variate method to further reduce the variance of the estimated calibration error. As70

a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA71

methods. This paper has the following contributions:72

• We uncover a dilemma in the open problem of Calibration in DA: existing domain adaptation73

models learn higher classification accuracy at the expense of well-calibrated probabilities.74

• We propose a Transferable Calibration (TransCal) method, achieving accurate calibration75

with lower bias and variance in a unified hyperparameter-free optimization framework.76

• We conduct extensive experiments on various DA methods, datasets, and calibration metrics,77

while the effectiveness of our method has been justified both theoretically and empirically.78
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I Calibration in DA is challenging due to the existence of
domain shift and the lack of target label

Transferable Calibration Framework

I Estimate the target ECE by importance weighting

Ex∼q

[
L(·)(φ(x), y)

]
=

∫

q

L(·)(φ(x), y)q(x)dx

=

∫

p

q(x)

p(x)
L(·)(φ(x), y)p(x)dx = Ex∼p

[
w(x)L(·)(φ(x), y)

]
,

(4)
I Estimate density ratio from a logistic regression classifier

ŵ(x) =
q(x)

p(x)
=

v(x|d = 0)

v(x|d = 1)
=

P(d = 1)

P(d = 0)

P(d = 0|x)

P(d = 1|x)
, (5)

Transferable Calibration: Bias Reduction

I Bias between the estimated ECE and the ground-truth one∣∣∣Ex∼q

[
Lŵ(x)
ECE

]
− Ex∼q

[
Lw(x)
ECE

]∣∣∣
= |Ex∼p [ŵ(x)LECE(φ(x), y)]− Ex∼p [w(x)LECE(φ(x), y)]|
= |Ex∼p [(w(x)− ŵ(x))LECE(φ(x), y)]| .

(6)
I The discrepancy between ŵ(x) and w(x) can be bounded by

Ex∼p

[
(w(x)− ŵ(x))2

]
≤ (M+1)4Ex∼p

[(
P(d = 1|x)− P̂(d = 1|x)

)2
]
.

(7)
I Use λ (0 ≤ λ ≤ 1) to control the bound M of ŵ(x)

T ∗ = arg min
T ,λ

Exv∼p [w̃(xv)LECE(σ(φ(xv)/T ), y)] , w̃(xi
v) =

[
ŵ(xi

v)
]λ
.

(8)

Transferable Calibration: Variance Reduction

I Serial Control Variate: Var[u∗∗] ≤ Var[u∗] ≤ Var[u]

u∗ = u + η1(t1 − τ1)

u∗∗ = u∗ + η2(t2 − τ2)
(9)

I First, use importance weight w̃(xs) as a control covariate

E∗q(̂y, y) = Ẽq(̂y, y)− 1

ns

Cov(Lw̃
ECE, w̃(x))

Var[w̃(x)]

ns∑

i=1

[w̃(xi
s)− 1].

(10)
I Second, use the prediction correctness r(xs) as another one

E∗∗q (̂y, y) = E∗q(̂y, y)− 1

ns

Cov(Lw̃∗
ECE, r(x))

Var[r(x)]

ns∑

i=1

[r(xi
s)− c],

(11)

Experiments and Results

Table 2: ECE (%) vs. Acc (%) via various calibration methods on Office-Home with CDAN

Metric Cal. Method A!C A!P A!R C!A C!P C!R R!A R!C R!P Avg

Acc
Before Cal. 49.4 68.4 75.5 57.6 70.1 70.4 68.9 54.4 81.2 68.3
MC-dropout [12] 47.2 66.2 71.4 57.1 65.7 70.6 68.3 53.6 80.7 66.7
TransCal (ours) 49.4 68.4 75.5 57.6 70.1 70.4 68.9 54.4 81.2 68.3

ECE

Before Cal. 40.2 26.4 17.8 35.8 23.5 21.9 24.8 36.4 14.5 26.8
MC-dropout [12] 33.1 21.3 15.0 24.2 20.5 13.2 25.6 14.2 22.4 19.6
Matrix Scaling 44.7 28.8 19.7 36.1 25.4 24.1 38.1 15.7 29.5 29.1
Vector Scaling 34.7 18.0 11.3 23.4 15.4 11.5 27.3 8.5 20.0 18.9
Temp. Scaling 28.3 17.6 10.1 21.2 13.2 8.2 26.0 8.8 18.1 16.8
CPCS [38] 35.0 29.4 8.3 21.3 29.0 5.6 19.9 9.1 20.3 19.8

TransCal (w/o Bias) 21.7 10.8 5.8 27.6 9.2 6.0 27.4 5.2 16.9 14.5
TransCal (w/o Variance) 31.2 16.4 6.5 31.1 14.7 16.1 27.5 4.1 20.0 18.6
TransCal (ours) 22.9 9.3 5.1 21.7 14.0 6.4 21.6 4.5 15.6 13.5
Oracle 5.8 8.1 4.8 10.0 7.7 4.2 5.5 3.9 6.2 6.2

Table 3: ECE (%) before and after various calibration methods on several DA methods and datasets.

Method Dataset Office-Home Sketch VisDA
Transfer Task A!C A!P A!R C!A C!P C!R Avg I!S S!R

MDD

Before Cal. (Vanilla) 33.6 18.7 13.0 28.9 22.9 19.0 22.7 19.7 30.5
IID Cal. (Temp. Scaling) 28.7 16.4 9.3 21.8 16.5 12.1 17.5 14.7 29.1
CPCS [38] 29.5 17.3 9.6 22.9 16.7 11.8 18.0 14.2 30.4
TransCal (ours) 13.5 11.4 4.8 21.8 7.0 11.1 11.6 8.1 16.1
Oracle 6.8 8.5 4.7 7.0 5.8 4.0 6.1 4.7 7.4

MCD

Before Cal. (Vanilla) 39.4 28.8 20.5 33.9 27.9 20.1 28.4 18.3 25.7
IID Cal. (Temp. Scaling) 21.8 22.0 15.1 22.5 20.5 9.1 18.5 13.0 23.2
CPCS [38] 23.1 22.3 15.4 20.6 20.0 9.0 18.4 12.9 22.9
TransCal (ours) 13.1 20.2 5.1 15.5 9.3 9.1 12.0 10.2 7.8
Oracle 5.6 9.4 2.3 7.1 7.4 2.5 5.7 3.6 1.8

can see that TransCal is much better and approaches the Oracle one on the task: Clipart ! Product.
More reliability diagrams of other tasks to back up this conclusion are shown in D.3 of Appendix.

Quantitative Results. As reported in Table 2 and Table 3, TransCal achieves much lower ECE than
competitors (dereases about 30% or more, e.g. when TransCal is used to calibrate MCD on VisDA,
the target ECE is reduced from 22.9 to 7.8) on various datasets and domain adaptation methods. Some
results of TransCal are even approaching the Oracle ones. Further, the ablation studies on TransCal
(w/o Bias) and TransCal (w/o Variance) verify that both bias reduction term and variance reduction
term are effective. TransCal can be generalized to other tasks of Office-Home (D.2.1), to more DA
methods (D.2.2), and to DomainNet and Office-31 (D.2.3), all shown in Appendix. Further, the results
evaluated by NLL and BS metrics are included in D.2.4 and D.2.5 of Appendix respectively. Apart
from computer vision datasets, TransCal performs well in 12 transfer tasks of a popular NLP dataset:
Amazon Multi-Domain Sentiment in Table 4. As shown in Table. 2, it is noteworthy that TransCal

Table 4: ECE (%) via various calibration methods on Multi-Domain Sentiment.

Cal. Method B!D B!E B!K D!B D!E D!K E!B E!D E!K K!B K!D K!E Avg

Before Cal. 13.7 15.2 17.5 20.4 18.6 21.4 11.3 10.3 23.0 13.1 14.5 20.9 16.7
Temp. Scaling 5.9 8.2 5.0 2.6 5.5 4.0 17.1 17.3 6.2 16.5 14.9 6.6 9.2
TransCal (ours) 8.0 6.1 3.8 2.4 1.4 4.0 7.7 8.4 2.2 10.9 11.2 4.2 5.9
Oracle 2.0 3.0 3.6 1.9 1.3 2.5 2.6 1.4 1.8 2.9 2.0 1.6 2.2
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